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SUMMARY 
We investigate the instability of 2D incompressible flows in a rough planar channel by tracking the growth 
of the unstable mode in its early stage. We develop both second- and fourth-order finite difference methods 
on a staggered grid, together with a fully implicit time-marching scheme, using grid generation to 
accommodate fairly general geometries. A multigrid full approximation scheme based on the line- 
distributive relaxation method is used for fast convergence. For a 2D smooth channel, numerical results 
show good agreement with the analytic solution obtained from linear theory for small disturbances. 
Numerical results for a 2D channel with one and two roughness elements are analysed by Fourier analysis. 
They show how the roughness elements affect the growth of the perturbation. 

KEY WORDS Flow transition General geometry Multigrid Roughness 

1. INTRODUCTION 

Developing an understanding of flow transition at high Reynolds numbers has been a central 
problem in the theory of fluid motion for over a century. It also has great practical interest. 
Numerical simulation of flow transition in a channel has been successfully accomplished by 
several researchers,’.’ most of whom use spectral methods with explicit time marching and 
non-staggered grids3 A computationally efficient ‘temporal’ approach4 which follows the time 
evolution of a single wavelength of the disturbance has been widely applied to simulate the 
transition process. A very efficient multigrid finite volume scheme developed by Liu et d5-’ 
achieves very good agreement with linear theory for temporal evolution induced by small 
disturbances, but the computation was performed only on uniform grids. In order to obtain 
more accurate results, we must use a rather fine grid for adequate resolution of the boundary 
layers where the velocity of the flow has large gradients. For this reason, here we use a 
transformation to change our problem from physical to computational co-ordinates. In the 
computational plane the grid is uniform, although the corresponding grid is generally non- 
uniform in the physical plane. For example, we can make the mesh finer near solid walls but 
coarser elsewhere. In this way the governing equations may be solved on a uniform grid using 
a rather standard multigrid method. 

In this paper we first derive the governing Navier-Stokes equations in the computational 
plane in such a way that the continuity equation maintains the same conservation form as in 
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the physical plane. This makes it easy to apply the distributive relaxation scheme. The 
discretization is then accomplished by finite differences on a staggered grid in space, with 
second-order backward Euler in time. We use multigrid for fast solution of the large linear 
system arising at each time step. Flow transition in a planar channel is employed as a model 
problem and as a basis for assessing the accuracy and efficiency of our approach. 

The more realistic spatial approach, which concerns not only the single wavelength of the 
flow but several wavelengths, is also employed in this paper. A multidomain method' is applied 
here to avoid possible reflection of the outgoing wave from the outflow boundary. At Re = 5000, 
which corresponds to a decreasing mode according to linear stability theory, we use both single 
and double solitary-type roughness elements to investigate the influence of roughness on 
transition. A Fourier transformation is then used to analyse the increasing rate of different 
Fourier modes of the disturbance; it clearly shows that roughness makes the flow more unstable 
by inducing high-frequency waves. 

2. GOVERNING EQUATIONS AND BOUNDARY CONDITIONS 

The two-dimensional, time-dependent, incompressible Navier-Stokes equations are used as the 
governing equations for the planar channel flow: 

where u and v are the velocity components in the x- and y-directions respectively and p is the 
pressure. The equations are non-dimensionalized with respect to the centreline velocity Uo, 
channel half-width h, kinematic viscosity parameter v, and Reynolds number 

Re = U,h/v. (4) 

The computational domain in the ydirection is now restricted to y~ [0,2]. The boundary 
conditions on the solid walls are (see Figure 1) 

U(x, 0, f )  = v(x, 0, f )  = 0, u(x, 2, f )  = v(x, 2, t )  = 0. (5) 

2 

0 
0 L 

Figure 1. Planar channel flow 
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Because we use a staggered grid, boundary conditions for p are not needed on the solid wall. 
For simplicity we consider the temporal instability first for channel flows and assume periodic 
boundary conditions in the x- direction: 

2 
Re 4x9 Y ,  t )  = u(x + L, Y ,  t), Nx, Y ,  t )  = Nx + L, Y ,  0, P(x, Y ,  0 = Ptx + L, Y ,  t )  + - L, 

(6) 
where L is the wavelength of a specified mode of disturbance. 

and p o :  
Poiseuille flow is the steady state solution of (1)-(3), whose variables are denoted by uo, uo 

2 
Re 

po(x, y ,  t )  = - - x + c. (7) U d X ,  Y ,  t )  = 1 - (Y - u2, udx, Y ,  t )  = 0, 

Here C is a constant. This solution is used as the undisturbed base solution. 
If we impose some disturbance at t = 0 on Poiseuille flow, it will generally become time- 

dependent. For such a disturbed flow, in order to reduce round-off error in the computational 
procedure, we write the primitive variables in the perturbation form 

u = uo+ u‘, 0 = u,+ u’, P = Po+ P’. (8) 

Substituting (8) into (1)-(3), using the fact that uo = 0 and eliminating the terms for the steady 
base flow, we may then rewrite the governing equations in the perturbation form 

(9) 

(10) 

au av 
ax ay 
-+-  = 0. (1 1) 

Here for simplicity we drop the prime notation so that u, u and p now actually stand for the 
perturbation variables u’, u’ and p’. Note that the driving term -2/Re has been eliminated from 
(9) by the steady base flow equivalent. The boundary conditions may now be rewritten as 

u(x, 0, t )  = v(x, 0, t )  = 0, 

4x9 Y ,  t )  = 4 x  + L, Y ,  t), 

d x ,  2, t )  = v(x, 2,t )  = 0, 

4% y,  t )  = D(x + L, y ,  t),  

A x ,  Y ,  t )  = P(x + L, Y ,  t). (12) 

3. PERTURBATION FORM IN THE COMPUTATIONAL PLANE 

To meet the requirements of general geometry, a one-to-one mapping is used to transfer an 
arbitrary domain in the physical plane to the computational plane. In Figure 2, R represents an 
arbitrary domain in the Cartesian co-ordinate system, and AB, BC, C D  and DA are its smooth 
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Figure 2. Physical plane 

b - c  
Figure 3. Computational plane 

boundary segments. The objective is to solve problem (9H12) on the domain Q which we will 
map on to the computational domain R' depicted in Figure 3. 

Assume that there exists an one-to-one co-ordinate transformation 

x = x ( t ,  tl), Y = Y(t, tl) (13) 

from the computational plane (t, q)  to the physical plane (x ,  y )  and that the domain R' in the 
plane (<, q) is a rectangular region. Here we assume that x(r ,  q) and Y(t, q)  are smooth functions 
on R' and that the transformation is one-to-one, so we have 

J =  x c  = x < y , - x , y <  # 0. Ixl  Y,l 
(14) 

J is the Jacobian of the co-ordinate transformation (13). We then obtain the relations 

t x  = YnlJ, rlx = -YelJ,  tr = - x J J ,  'I, = X c I J .  (1 5)  

To derive the representation of equations (9Hll) in the plane (& q), we suppose 
differentiable function in the plane (x, y). Thus 

is a generic 

1 1 
(16) 

a4 
ax - = 4cL + 4 q q x  = j (QeY, - 4,YO = j COlq4)e - b<41ql, 
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Using these formulae, we obtain the following system of equations in the new variables U ,  I/ 
and p :  

a(xg u + x,, v) 
at 

(18) 
a(y,p) aOltp) 

at all 
2(y - lb, u + y, V )  = 0, + 

+ 

+ 

Here 

u = y,u - x,u, 
a = x ,  2 + y ; ,  

v = xgv - y p ,  

B = x,x ,  + Y<Y,, Y = x:  + Ys’. 

Note that the computational continuity equation (20) is of the same form as the physical one (1 1). 

instead of solving (9H1 l), we can solve (18H20) and recover the original velocities by 

1 
J 

Equations (18H20) are equations (9H11) transformed to the computational plane (r,  q). Thus, 

(21) u = - (X<U + x,V),  
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The boundary conditions on the solid walls become (see Figure 3) 

U(5, C, t )  = W ,  C, t )  = 0, w, d ,  t )  = V L d ,  r) = 0 (23) 

and the periodic boundary conditions in the (-direction are 

U(5,  v ,  t )  = U(5 + I ,  v ,  t ) ,  W ,  v ,  r) = v(t + 1, v ,  t), ~ ( 5 ,  v ,  t )  = A5 + I ,  v ,  t ) ,  
(24) 

where I = b - a. For convenience we will call (18H20) the U-equation, the V-equation and the 
continuity equation respectively. 

4. SECOND-ORDER FULLY IMPLICIT SCHEME 

In the computational plane we use a uniform staggered grid for the discretization (see Figure 
4). Horizontal arrows represent locations where U-values are assigned, vertical arrows V-values 
and circles p-values. Although both second- and fourth-order schemes are developed, for 
simplicity of discussion we will focus only on the second-order scheme. Our indexing scheme is 
indicated in Figure 4, with a typical neighbourhood depicted in Figure 5. 

j = 3  

t 7  i = 2  

0 0 0 0 0 0 0 0 

t t t t t t t t 
I I 

I( 1 = 2 ; = 3  ...... i = ni 

Figure 4. Staggered grid in computational plane (t, q).  Indices for U-points are noted 

Figure 5. Subscript systems for U- V -  and p-points 
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We will refer to values of the velocities at points other than their prime location. Such values 
will be denoted by an overbar and will invariably reference indices of the opposing velocity. For 
example, we will use Vi.j to represent the value of V at the point ( i , j )  which is based on the 
U-subscript system. Similarly Oi,j represents the value of U at the point (i,j) which is based 
on the V-subscript system. We use second-order interpolation to obtain the averages 

- 

8.  1.J  '=$ (cJ i . j - ]  + U i + ' , j - l  + U , , j +  cJi+l , j ) ,  v, ' . J  ' = 3y-1 , j  + yqj + Y - ] , j +  1 + K . j +  1). 

4.1. Discretization 

A second-order backward Euler in time and a second-order finite difference in space are 
applied to discretize equations (18H20). Since these equations are quite complicated, we do not 
detail the full discretization here, but instead describe the discretization form for several of its 
terms. 

First, the time derivative terms of (18) are discretized as illustrated by the following (here all 
indices refer to the U-subscript system): 

SU X X 
+ X, ") = 3~ (3U;,f1 - 4U;.j + V;.;') + 

(xi 
(3C.f' - 4C,j + q,;'), (25)  d t  i . j  2At 2At 

where superscripts n and n - 1 signify earlier time levels, and the current time level, signified 
by n + 1.  is otherwise assumed. 

Other terms in (18) are discretized as follows (here we use index offsets o f f  in intermediate 
expressions to suggest the averaging formulae we develop): 

i . j  
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The continuity equation is very simple to discretize: 

4.2. General form of the finite diflerence equations 

At every point ( i , j )  of the U-system, V-system or p-system respectively the finite difference 

scheme for equations (18H20) can be written in a general form as 

AN,, jUi, j+ + ASi, jUi, j- 1 + AEi, jUi+ 1, j + A W ,  jUi- 1, j + ACi, jUi, j + APCi, jpi, j 

+ AP%,jpi-i,j+ Xi,j = &,j, 

+ BPSi, jpi, j- 1 + q = si,J¶ 

(30) 

(3 1) 

(32) 

BNi,jv,j+l  + BSi,jv.j-l + BEi,jY+l,j + B w , j v - i , j +  BCi,jY.j+ BPCi,j~i.j  

CUEi,jUi+l.j + CUCi,jUi,j+ Cmi,jvl , j+l  + CVCi,jY,j-l = T,j. 
Here, taking the U-equation as an example, AE, AW AN, AS and AC are the coefficients for the 
discretized U-points. APC and APW are the coefficients for the discretized p-points, R is the 
source term, which does not change during the given time step, and X includes other terms and 
must be updated after each iteration, but is frozen during each relaxation sweep. 

The coefficients of equations (30H32) are quite complicated, so we do not express them in 
detail here. 

4.3. Boundary modification 

In the (-direction we have the periodic boundary conditions 

U1.j = u n i - i , j ,  V1,j = Ki-l . j ,  P1.j = Pni-l,j, 
p .  . = p 2 .  V .  n1.J . =  V2/j, n1.J .J' U . . = U  n1.J 2. j *  

where ni is the number of grid points in the tJ-direction. 

modify them as follows. 
At the solid wall boundary some of the formulae used in Section 4.1 are inappropriate. We 

First consider the U-equation for j = 2 (see Figure 6). In (27) the computational formula for 

i . j -  112 

Figure 6. Bottom solid wall 
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is inappropriate because it needs the value 

which references the point ( i , j  - 1) outside the computational domain. To avoid using the ghost 
points, we derive the formula directly. For a generic function Q a Taylor series expansion yields 

Note that both U and I/ are zero at the solid wall, so we have 

For (28) we use the analogous expansion 

to derive the term 

Pi- 1 . j  + Pi.j 
2 - Y<,J+lp(Pi- 1.j  + Pi. j 

To be more specific, the modified formulae for the U-equation at j = 2 are as follows 
(superscript 'old' refers to the unmodified formulae, 'new' to the modified ones): 
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= 0, 

Modifications for the U-equation at j = n j  - 1 and for the V-equation at j = 2 and n j  - 1 
are analogous. 

5. DISTRIBUTIVE RELAXATION AND MULTIGRID 

At each time step we need to solve the spatial system (30)-(32). For this purpose we have 
developed an efficient multigrid scheme based on a distributive relaxation, which is described 
loosely as f01lows.~ 

First apply the line Gauss-Seidel relaxation to update U in (30) and V in (31). Then for each 
box based on p i .  we adjust Ui, j ,  Ui + j ,  l(. j ,  v. + I and pi, simultaneously to satisfy the associated 
neighbouring four momentum equations and continuity equation, using the corrections given 
in the form (see Figure 7) 

U"," = u. . - 6 U .  1.1' . 

. - 6V 1.1' . 

u;::,j = U i + l , j  + 6 U i a j ,  

v:;y, = & , j + l  + 6&. j ,  

1 . 1  1 . 1  

I/"." = 
1. I 1.1 

pyJw = p i , j  + 6 p i . j .  

The corresponding equations for these corrections are 

(AEi. j - ACi. j )6Ui,  j + APCi, j6p i ,  j = 0, 

( B N , ,  j - BCi, j)6 v, j + BPC,, j6P,, j = 0, 

- cuci.j)Gui.j + ( C V N i . j  - C V C , , j ) S ~ , j  = Ti,j .  

Here 

Ti*j  = T * j  - (CUEi.jUi+l.j+ cuci,jui.j+ c v I V i , j v , j + 1 +  CVCi.jY,j) .  

Letting 

Figure 7. Distributive relaxation schematic 
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then 

- hv . =  1i . j  = psv , j ,  "' 
(CUE, , j  - cuc,,j)p + (CVN, , j  - CVCi,j)' 

AC,.j - AE,, ,  
6 p .  . =  6Ui,j. 

APC,, L J  

Relaxation methods are generally much too slow by themselves to solve the large systems 
generated at each time step. To obtain optimal efficiency, we therefore use a multigrid method 
based on this distributive relaxation scheme. A full approximation multigrid scheme (FAS) is 
used to accommodate non-linearities. A two-level FAS algorithm for an equation of the form 

Lhuh = h~ 
may be described loosely as follows. 

1. Relax on L h U h  = f h .  

2. Solve L 2 h u 2 h  = L 2 h l t h U h  + R h ( f h  - L h u h ) .  

3. Replace U h  u h  + I l h ( U 2 h  - 1 t h U h ) .  

The notation we have introduced includes the difference operators L h  and the restriction 
operators Ith (for the approximation) and ch (for the residual) and the interpolation operator 
&. For details see Reference 5. 

6. COMPUTATIONAL RESULTS AND CONCLUSIONS 

6.1. Flow transition in a smooth planar channel 

To study transition, we considered the least stable eigenmode of the linear theory. For such 
a mode the linear stability theory provides an approximate analytic solution (which is accurate 
for small disturbances) to the governing equations (9H11) given by 

u = ~Real{~"(y)eiax-i""}, u = &Real{ &"'y)e'"" - i'"r}, (35) 

where E is a small positive number and 'Real' stands for 'the real part of'. The complex function 
4 = 4R + i4, and complex frequency w = wR + iw, come from the solution of the Orr-Sommer- 
feld eigenvalue problem. The Orr-Sommerfeld equation that governs the linear stability of 
parallel shear flow is 

{ ($ - a2)' - iRe[(au, - w)( $ - a 2 )  - a&]}4  = 0, 

&x, 0) = 4(x, 2) = @(x, 0) = ("x, 2) = 0. (36) 

The particular problems chosen here for study used Re = 7500 and a = 1. Equation (36) was 
solved by a spectral method with Chebyshev polynomials of order 50. The only observed growing 
mode is characterized by w = o,+ iw,, where wR = 0.24989154 and w, = 0.00223497. Note that 
the streamfunction is given by 

q, = ,#,cy)ei(ax-w4 9 
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Figure 8. Uniform grid (mesh A) 

Figure 9. y-direction stretched grid (mesh B) 

so the streamwise and normal disturbance velocities can be obtained according to 

= Real{ 4'(y)ei("" - "Rt) > *  u = Real{ -i4(y)e'(ux-"'R')}. 

Setting a = 1, we obtain the eigenfunctions for both u and u in the following forms: 

4"(Y) = 4;; + $Y = (6'(Y), 

uo = &(& cos x - t#~: sin x), 

$"(y) = 4;; + i& = - i&y). (37) 

The initial disturbance is chosen from (35)  at t = 0: 

uo = 44;; cos x - 4: sin x), (3 8) 

where E is set to O*OOOl. 
We used a time step At = T0/500 = (2n/wR)/500 and studied the behaviour of the simulation 

on a uniform grid (mesh A of Figure 8) for verification and a y-direction stretched grid (mesh 
B of Figure 9) to test our transformation scheme. Both meshes are 34 x 130. For mesh B the 
spacing in the x-direction is uniform but the spacing in the y-direction is such that the grid 
becomes finer near the solid walls. 

We compared the results obtained from our numerical scheme against ( 3 3 ,  which is the 
analytic solution for a small disturbance. For these comparisons we observed the disturbance 
kinetic energy 

E = f Jo2 dy JoL (uZ + 02)  dx. (39) 

For sufficiently low-amplitude waves this should exhibit exponential behaviour: 

E( t )  = EOe2"" or log[E(t)/E,] = 2 4 4  (40) 
where E ,  is the disturbance energy at t = 0. 

The computational results of the perturbation energy distribution are shown in Figure lqa). 
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Figure lqa). Comparison of perturbation energy distributions obtained on different grids during three T-S periods for 
Re = 7500 

Figure lqb). Comparison of perturbation energy distributions obtained by fourth-order scheme (on a 34 x 130 grid) 
and linear stability theory during 20 T-S periods for Re = 7500 

It is clear that the results obtained by mesh B are better than those obtained by mesh A. Figure 
11 depicts the streamfunction contours at selected time steps, showing that the amplitude of the 
disturbance grows with time, as expected, and that the phase accuracy (travelling wave speed) 
is very good. Although the spectral method can get more accurate results, the current approach 
is more suitable for general geometric boundaries. On the other hand, the accuracy of the results 
become much better when we use the fourth-order scheme (see Figure lqb)). 

6.2. Flow transition in a channel with one and two roughness elements 

To study the affect of boundary roughness elements on transition, we used the original 
Navier-Stokes system (1H3) as the governing equations. Note that this is a spatially evolving 
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Figure 11. Contour plots of perturbation streamfunctions at selected times for Re = 7500. Grid 34 x 130; flow direction 
is from left to right 

instability problem. Letting Re = 5000 and w = 033017, we then obtained aR = 1.1557 and 
a, = 0.0106 from the Orr-Sommerfeld equation (36), which specifies a damping mode. Figure 
12 shows the computational domains used in our tests. 

We used the same approach described above to solve equations (1)-(3), with the difference 
here that we need to solve equations (1)-(3) first to obtain the base flow. The computational 
domain is set to six T-S wavelengths (five wavelengths physical domain and one wavelength 
buffer domain) and the grid size is 170 x 50. The grid is slightly stretched so that there are 
more grid points in the recirculation zone. To maintain the high accuracy needed for transition 
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one roughneee element 

two roughneee elements 

Figure 12. Grids for the rough channel with single and double roughness elements 
simulation, an analytical mapping is used here to eliminate additional errors induced by the 
numerical scheme. The height of the hump is set to K = 0.15 and the shape of the lower solid 
wall is given by 

m 

YO(X) = K 1 sechZ[J2(x - xipn)]. 
n =  1 

For the one-hump case m = 1 and ipl = 28; for the two-hump case m = 2, ipl = 42 and 
ip2 = 70. For these two special cases we used the solution obtained at time t = 95-15 as the base 
flow. Based on this, we then imposed a disturbance at the flow inlet with amplitude E = 
0.0025J2. The contours of the streamfunction for this disturbance are illustrated in Figure 13. 

To study the effect of roughness on flow transition, a Fourier transformation was applied to 
analyse the computational results. This allowed us to determined the distribution of various 
Fourier modes. Note that 

271 

where ii(x, y, t) is the complex disturbance velocity and G(x, y, k) is the Fourier coefficient 
associated with the frequency kw at point (x, y). Then 

lii(x, y, k)l = 2&x, y,  kIZ + b(x, y, kY1 k = 0, 1, 2,.  .. ., (43) 

with 

Real{ii(x, y, t)}cos(kot)dt, 

b(x, y, k) = - Real{G(x, y, t)sin(kwt)dt. 
2 A  " 

It is well known that only the fundamental wave (k = 1) exists for smooth channel flow at 
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(b)  
Figure 13. Streamfunction contours for (a) single roughness and (b) double roughness obtained at t = 6T on a 170 x 50 
grid. Re = 5000, E = 09025,/2 and K, = 0.15. Dashed lines indicate negative contours and flow direction is from left to 

right 

X X 

Figure 14. Maximum amplitudes of fundamental wave u,, u,, mean flow distortion uo, vo and first-harmonic wave u2. 
u2 for Re = 5O00, K, = 0 1 5  and E = 0.0025J2 with one roughness element (grid 170 x 50) 
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Figure 15. Maximum amplitudes of fundamental wave u,, u , ,  mean flow distortion uo, u,,, first-harmonic wave u2, u2 
and second-harmonic wave u3, u 3  for Re = 5O00, K, = 0 1 5  and E = 0.0025J2 with two roughness elements (grid 

170 x 50) 

the stage of linear evolution. However, several Fourier components were obtained for channel 
flow with roughness elements. Figures 14 and 15 depict the maximum amplitudes of the mean 
flow distortion uo, uo, the fundamental wave ul, u I ,  and the first-harmonic wave u2,  u2,  for the 
channels with one and two humps respectively. 

While few numerical or experimental results exist with which to compare our computational 
results, what we have obtained does seem at least qualitatively reasonable. According to linear 
stability theory, when the Reynolds number is not high enough, say Re = 5000, the flow in a 
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planar channel is stable. Because of the influence of roughness elements, the flow becomes 
unstable, which can be seen clearly from Figures 13-15. In Figure 13 the disturbance waves are 
obviously increasing for some distance after the hump. Figures 14 and 15 show that in channels 
with one or two roughness elements, not only the increasing rate of the fundamental wave 
changed, but also the mean flow distortion and the first-harmonic wave appeared. This suggests 
that transition will appear earlier in a rough channel than it will for a smooth one. 

Since this study only concerns the 2D case, it is impossible to observe more evidence of flow 
transition to turbulent, but clearly the stability of laminar flow becomes worse in the rough 
channels. 

6.3. Conclusions 

Based on the above computations, we conclude the following. 

1. Grids that respond to boundary layers and irregular domains can achieve the same accuracy 
with significantly fewer grid points than a uniform grid. 

2. Co-ordinate transformations can be used so that the computational continuity equation 
maintains its conventional form, which enables easy application of a simple distributive 
relaxation scheme and an efficient multigrid method to solve the discretized system at each 
time step. 

3. In the computational plane the grids are still uniform, which is convenient for high-order 
discretization and standard multigrid implementation. 

4. The code based on our method can be used for efficient solution of flow problems with 
fairly general geometries, including e.g. transitional flow in a channel with roughness 
elements. 
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